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Spring 2022 update on the status of the Local Wavenumber Model (LWN) in xRAGE
N. O. Braun; J. A. Saenz; J. Canfield

XCP / XTD, Los Alamos National Laboratory, Los Alamos, NM, USA

Abstract

An updated implementation of the Local Wavenumber Model (LWN) is discussed, primarily differing from recent
versions [1] by placing a greater focus on capturing a wide variety of turbulent flows including compressible flows.
New models are introduced for spectral backscatter effects, the effect of bulk compression on the spectra, and
incorporating the multispecies variables tracked in BHR4 [2]. Methods for reducing the compurational expense of
tracking spectra for turbulent quantites are also investigated. Like recent versions of BHR [3, 4, 2], we test LWN in a
number of canonical flows using a single set of coefficients, but additional coefficient tuning is likely to be required
to improve the agreement with some of these flows.
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1. Background

Turbulent flows play an important role in the mixing of materials in many problems of interest, and modeling the
development and evolution of turbulent presents a significant difficulty. The Besnard-Harlow-Rauenzahn (BHR)
models [5, 6, 3, 4, 2] have shown significant progress in modeling variable density turbulence in compressible flows,
but retain certain shortcoming, particularly in the handling of initial conditions that develop from a laminar state.
Tracer-based modal modeling [7, 8, 9] has aided in modeling transitional flows, but neither the BHR turbulence
models nor the available laminar modal models are well suited for the transitional stages of a flow.

Spectral models, particularly the proposed Local Wavenumber (LWN) model [1, 10, 11, 12], have seen renewed
interest due to their ability to better address transitional flows in a physical manner. The models are developed off of
many historical models [13, 14, 15, 16], but further work is needed to produce models that work across a broad range
of compressible, multi-material flows without case-by-base tuning. Simple preliminary models for phenomena such
as compression and backscatter are presented to aid in this regard.

The purpose of this report is to document updates to the version of LWN currently implemented in the xRage
hydrocode, as an extension of the documentation in the previous L3 milestone [11]. The development of the modeled
equations is discussed in section 2. Physics changes to the model relative to previous xRage version of LWN [11] are
presented in sections 2.1 through 2.3. The implementation of LWN in xRage is currently closely tied to the BHR3.1
implementation, and equations for the LWN variables rationalizing this similarity are developed in sections 2.4
through 2.6. A relatively cost-effective approach to numerical spectral updates is presented in section 3. Although
coefficients tuning and closure development are not finalized, the preliminary model presented here is tested in a
number of canonical flows in section 4 to illustrate that it can behave in a relatively robust manner in inhomogeneous
and compressible flows.

2. Model Construction

The approach here is to represent the two-point LWN model following the definitions and approach from BHR3.1’s
[3] single point equations as much as possible. This is useful because it separates one-point production/destruction
terms from spectral terms, which potentially makes the role of the new two-point terms easier to interpret.
Additionally, the one-point BHR3.1 form is well tested and relatively stable, and this form allows some models
developed for BHR3.1 to be applied to LWN.

We start by defining the following variables,
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There are numerous different ways to define these correlations, for instance forms similar to R;;(x,1) =

p)u (x) ui(x+1r)/p(x) are quite common. Most forms don’t make a significant difference once final
assumptions have been made, and although some forms enforce useful symmetry properties such as R;;(x,1) =
Rj;(x, 1) these generally come at the cost of increased complexity. Single point values used in models such as BHR

[3] are denoted R;;(x), noting that R;;(x) = R;;(x,r = 0). Clark and Zemach [16] use a similar form based on x + g,

and it can be view as appropriate for turbulence modeling in some regards because it represents correlations in the
vicinity of x, rather than the correlation of x with nearby points.

We generally seek Fourier-space solutions, and to reduce the dimensionality solve for shell-summed quantities e.g.
Rij(x, k) = f;:o f;T:OT (Rij (x, r)) k? sin(8) dOd¢p, where the Fourier transform is g(k) = F(g(r)). The single



point correlations are integrals over the shell integrals, e.g. R;j(x) = fooo R;;j(x, k;)dk,. The final results are only
dependent on the radial wavenumber and so as a shorthand we drop the subscript, R;;(x, k) = R;;(x, k).

2.1. Modeling Cascade terms with backscatter
LWN [10, 1] has typically modeled the cascade of energy towards fine scales using an advection-diffusion model
similar to that of Leith,
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The form of this frequency ensures that the flux of energy over k is constant in a R,,,,(x, k) < k™3 spectrum, consistent
with the slope seen in the spectra of high Reynolds number isotropic turbulence. Here, we use the same fundamental
form, but introduce an additional frequency associated with backscatter processes 6, (x, k),

0p()R;(x,1) OR;;(x, k)
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The backscatter frequency is assumed to be of the same form as 8~1(x, k), but integrated over large wavenumbers,
namely,

d
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The scaling in 8,1, (x, k) is assumed to yield a uniform advection velocity in a k* spectrum, which requires
kOpacr (X, k)R;j(x, k) and k%6, (x, k) OR;;(x,k)/0k to be constant if R;;(x,k) oc k*. Assuming ;. (x, k)
scales with the integral lengthscale for incompressible isotropic turbulence, L;, this yields,
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Additionally, there should not be a constant flux of energy towards large wavenumbers, as this would produce a pile
up of energy at the lower wavenumber bound. The flux from the backscatter term should vanish for R;;(x, k) « k*,

—Cl1kOpaer (X, KR (%, k) + C)20p001 (%, k)kzw = 0if Ry;(x, k) oc k* (10)
This requires that C;; = 4C/,, and this relation also holds for the cascade of the other variables a;(x, k) and b(x, k).
However, the very large power of k™15 means the turbulent backscatter frequency can become pathological in the
low-k tail on the spectrum. To stabilize this, we currently limit the backscatter frequency based on the condition
number on the update of k-space energy,

5k 1) 1o < 106 (1
The backscatter form is ad hoc, but reliably produces a k* regime in the low wavenumbers of the R,,,, spectrum when
initialized from top-hat initial condition spectra. EDQNM offers alternative models for backscatter [17] that are likely
more physical, but the simple advection-diffusion form of the Leith model is useful, particularly when considering
issues such as numerical stability. Clark and Spitz [15] also propose a backscatter model for a; abd b that is effectively
the forward cascade model but with a reversed advection direction. These models remove the adhoc dependence on
integral lengthscale, but it was found to be difficult to enforce that the transport of energy goes to zero at the lower k-



space boundary in preliminary testing. These problems could likely be overcome and using an advection model for
backscatter should not be ruled out.

Example spectra from an A, = 0.5 Rayleigh-Taylor simulation are shown in Figure 1 with and without the
backscatter term. When the initial condition does not contain significant amounts of energy at the low wavenumbers,
the case without backscatter tends to retain the steep slope at low wavenumbers, whereas the backscatter model forces
it to relax to a k* spectrum. Although the k* spectrum at low wavenumbers is not universal, having some energy
content at the large scales is typically realistic. The large scales are also a disproportionately large fraction of the
turbulent viscosity, and the backscatter term can significantly affect the statistics of the mixing layer, as shown in
Figure 2. The additional of the backscatter term has no noticeable effect at early times but has a significant impact on
the late time growth of the mixing layer.
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Figure I — Spectra of Ry, in an A, = 0.5 Rayleigh-Taylor simulation with the backscatter term 0}, (a), or without
the backscatter term (b). The spectra are sampled at the center of the mixing layer layer. Each line corresponds to a
different time, with later times being lines further left on the plots.
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Figure 2 — Mixed width(a) and turbulent kinetic energy (b) in an A, = 0.5 Rayleigh-Taylor simulation with and
without the backscatter term 6},},. The DNS is from Livescu et al. [18]. Note that this image to highlight effect of
the backscatter term, and coefficient tuning could bring the without backscatter case closer to the DNS.



2.2. Modeling the effect of bulk compression on spectra
Recent two-point turbulence models, e.g. [1], have mostly considered incompressible flows and have not needed to
consider the effects of phenomena such as shocks on the turbulent scales. Compressing turbulence will tend to reduce
the scales that describe the turbulence, and capturing this effect is important for high compression ratio flows. For
simplicity, we currently model the effects of bulk compression as an isotropic spectral-advection model

0p(X)R;; (x, T d

% = Ceomplinn 5 [Ry (%, 1] (12)
The coefficient Ccypmp = 1/3 is taken be the same as the scaling of the Taylor lengthscale with velocity dilatation in
rapid distortion theory (RDT) of spherical compressions [19]. One does not expect compression to behave in an
isotropic manner, for instance RDT predicts an axial compression in the 1-direction will compress the wavenumbers
of the transverse solenoidal fluctuations associated with R,, and Rs3, but not Ry; [20]. Capturing this anisotropic
effect on compression is likely important in reproducing some of the more complex behaviors seen in DNS, such as
the trend to towards a temporally increasing anisotropy in the single-point Reynolds stress tensor after shocks in RM
simulations [21]. Unfortunately constructing a model that reproduces this anisotropy is difficult, particularly in
spherical or cylindrical coordinate systems. Clark [16] proposed a more complex model for general flow cases
included shear, which may be useful if stretching and compressing of the spectra is found to be important in general
problems.

2.3. Modeling single-point multispecies variables
The multispecies variables tracked in BHR4 [2] track the fluctuations in mass fraction of each material, b¥, or the
turbulent flux of mass fraction of each material, a*. These variables are defined,

ak(x) = _P(x)ckp_((;f))u;’(x) (13)
bk (x) = ¢k (x) (14)

These multispecies terms previously have helped the BHR model capture certain types of stabilized interfaces [2], and
likely provide a more accurate approach to material transport than the gradient diffusion models used in many
turbulence models. While two-point models for a* and b* could be developed, it would likely be pathologically
expensive to evolve them because separate spectra for a* and b* would need to be tracked for each material. However,
in incompressible flows these multispecies terms can be related to the density terms tracked in LWN,
k k =k
a =Pk b= 53k =Tk (15)

Which suggests that if p¥ is roughly uniform then the multispecies terms a¥ and b* should have similar spectra
distributions to the density weighted terms tracked in LWN, a; and b. Tracking spectral equations for each material
with a¥ and b¥ would be cost prohibitive, so the single point equations for af and b* from BHR4 are retained [2].
These single point equations are still solvable because single point terms can easily be calculated from the two-point
terms in LWN, for example R;;(x) is the integral of R;;(x, k). The one term that can’t be used from BHR4 is the
dissipation rate of a¥ and b*, because these terms were closed using the dissipation lengthscale that was tracked in
BHR but is no longer tracked in LWN. Noting the relations (15), we assumed the dissipation for a® scales linearly
with the dissipation of a;,

€a
£qk = af (x) PYES (16)
£k ~ bk(x)% (17)

Where a; and the dissipation rate of a;, &,, (including interactions with the spectral boundary conditions) are
computed from the LWN equations. An alternative approach would be to assume spectra of the form (which is not
used here),
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And then calculate &, based on the cascade of a]’-‘ (x, k). The absolute values of the spectra are needed for stability,

aff(x, k) =~ aff (x)

(18)

but this may incur some error if, for example, the sign of a;(x, k) is positive at large scales and negative at small
scales. This spectral approach isn’t currently used due to being more computationally expensive. We use the same
single point equations for a¥ and b* from BHR4 [2], but with decay terms that match the two-point a and b tracked
in LWN, relative to the summation relations of (15)

_ k
% + (p_(x)a]' (x)ak (x)) ;
= (1= Cap)p* (P (x) + PRy (1) — (1 = Can)p(X)af (X)T; 5 () (20)
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2.4. R;j Equation

Given that we are developing the xRage version of LWN based on the construction of BHR, it is useful to develop
corresponding unclosed equations that follow BHR’s form. Many other forms for two-point turbulent statistics have
been derived [22, 15, 12, 14], but the form used here is specifically derived to trivially reduce the unclosed BHR
equations in the single point limit » — 0. This is a fairly simple process because if one follows the same steps used to
derive unclosed BHR equations e.g. [4], but retains two separate spatial evaluation points in the initial equations, this
will yield a set of equations that asymptote to the BHR equations in the limit of the two evaluation points becoming
equal. The unclosed BHR equations are relatively well understood, and it naturally separates quantities that produce
turbulent kinetic energy (terms that are non-zero as r — 0) from terms that only effect the spectral shape of the
Reynolds stress (terms that are zero for r — 0).

To obtain a transport equation for R;;(x,7), we multiple the transport equations for u" and pu”, evaluated at x —g

and x + g respectively, [15]

u{’ ~ " ~ " = 1 = 1= I 1 -
a_tl + u;l’ (ui + u; )n + unui,n = (V - ‘5) Onin +v Onin + Vo-ni,n + E (pRni),n (22)
opu;’ e ;P P\ -
atl + (pui (un + un)),n + PURUn = Uni,n - Eani,n + (1 + E (pRni),n (23)

For the full derivation see Appendix A.1. To simplify the results, we make the following assumptions:

e Neglect mean flow viscous stresses so 7;; = —-Ps; ;

e The assumption is made that mean flow quantities can be approximated by their local values, for example
p(x £ 1r/2) = p(x). This is accurate for homogenous flows, but neglects certain physics of inhomogeneous
flows. Other studies have used Taylor expansions such as p(x +r/2) = p(x) + gd’;—ix), but in compressible

flows with shocks present this could easily approximate negative densities or other nonphysical behavior. In
these cases, there does not appear to be any obvious to way to directly approximate nonlocal values without
using a nonlocal, and computationally impractical, method or modeling these effects in a term-by-term
manner. Clark and Zemach [16] provides a model for these ‘mean flow coupling’ terms in the R;; equation

in an incompressible case, but that also becomes quite complex. The one case where we do not neglect these



terms is in compression of the spectra. Shock-driven compression moves energy in the spectra towards
smaller scales, and is a result of inhomogeneity in the mean velocity field (specifically it seems the term

PG +r/Duw (x +1r/2)u (x — 1/2) (T (x +7/2) — iy (x — r/2))}).

Under these assumptions, we obtain a form of the R;;(x, ) that reduces to the R;;(x) form used by BHR3.1 [3, 4] if

evaluated at r = 0. For simplicity, and to maintain that all terms individually — 0 as r — oo, we write the equations
with a slightly different form of the transport term. The naming of terms follows the naming from BHR [4], though
because of the 2-point nature of these equations the terms make take on additional physics.

9p(xX)R;j(x,1)
at

+ (ﬁ(x)Rij (e, 1) (x)).n

4 (24)
= prod(x: T) + Ftrans (x: T) + Fpstrain+diss (x: T) + Z l—‘i (x, T)
i=1

The production term is,

Toroa(%,1) = —p(X)Rin (%, 1)1 (X) — pOOR; (%, Ui (x) + a;(x,7)P;(x) + a;(x, —1)P;(x)  (25)
The transport term is,

Tirans(,1) = — (p (x + g) u! (x —g) u)’ (x +g) Uy (x +g))‘n

+ (u{’ (x - g) o, (x + g) +p (x + g)v (x - g) u)’ (x + g) o, (x - g))n (26)
+4,067) (PR (x,0)) +pOORy; (1), (x, 0)

The pressure strain and dissipation terms are,

l—‘pstrain+di'ss(x' 1') =- (p (x + g) v (x - g) u]” (x + g))n O (x - g) - u{’n (x - g) 07’11 (x + g) (27)

The remaining terms have no net effect on the mean values and do not show up in the single point equations, I;(x, 0) =
0. Note that these often are in the form of a structure function-like term multiplied with a gradient.

I(x,r)=p (x + g) u)’ (x + g) Ul (x - %) [u;{ (x + %) —ul (x - g)] (28)
Lx,r) =— (v’ (x - g) ul (x + g) [p’ (x + g) —p (x - g)]) Pi(x) (29)
3 (x,1) = —{b(x,0)a;(x,—1) — b(x,)a;(x, 0)}P;(x) (30)

ri) = (e 5) (x+5) i (x=3) (n (x4 )~ ma (v-3)) a1

To obtain spectral forms, we Fourier transform two-point equation and take shell integrals in Fourier space. Assuming
that the correlations are symmetric in r, e.g. a;(x,r) = a;(x, —1), we obtain,

9p(xX)R;j(x, k)

S+ (PR (x k) ()

n

4 (32)
= lproa (x’ k) + Ftrans (x: k) + Fpstrain+diss (x: k) + Z l—‘i (x' k)

=1
The production term I},,.4 (X, k) can be written,

Tproa(®, k) = —p(X) Ry (x, k)T 5, (x) — PRy ; (x, k)T 5 (x) + a;(x, k)P j(x) + a;(x, k)P, (x) (33)
The I';(x, k) term is modified to a symmetric form to ensure R;;(x, k) stays symmetric. The definition of R;;(x, k) is
not guaranteed to stay symmetric, but it would require tracking an additional 3 components, and very similar forms of
R;; are symmetric.



T3(x, k) = —{b(x)a; (x, k) — b(x, k)a;(x)}P;(x)

1 _ _ (34)
~ -5 [{b(x)a;(x, k) — b(x, K)a; (x)}P;(x) + {b(x)a;(x, k) — b(x, k)a;(x)}P;(x)]
The transport term is modeled by a gradient diffusion argument in a similar manner as previous work [15],
Cerans (6, k) = Ca(PQOVe (DR (1, 1)) | (35)
Where Cj; is a tuned coefficient and the turbulent viscosity is taken to be uniform in k-space,
kR, (x, k)
vex) = f a1 (36)
The dissipation term is modeled by a k2-type destruction proportlonal to the kinematic viscosity v,
Taiss(x, k) = —2vE?p(x)R;;(x, k) 37

In the same manner as BHR3.1 [3], the pressure strain term is modeled as a slow return-to-isotropy combined with a
rapid distortion term,

Fpstram(x k) return to— Lsotropy(x k) + Fraptd dLstortlon(x k) (38)
o;
l—‘Tet'urn to— Lsotropy(x k) - _C Ch 1(x k)P(x) (RU (x k) ” Rnn(x k)) (39)

Frapid distortion(x: k) 3 B
= —Cr{ ai(x, K)P;(x) + a;(x,k)P;(x)}

2 _
+ Cro{ PO R (2, k)T 5 () + O Ry (X, )Ty ()} + 3 GrP(Max (x, k)P (%)
For now, the rapid distortion model and coefficient are taken directly from BHR3.1. The return to isotropy is taken to
be proportional to the turbulent frequency [10],

k
07 1(x, k) = J- VKR, (x, k")dk' 41)
0

The T (x, k) appears to represent the main cascade term, driving energy towards small wavenumbers. Here it is
modeled by the the typical LWN cascade model with the addition of the backscatter term,

(40)

(%, k) = p(x) ;—k k(6720 1) + 05 (x,K)) [—c;lRi,- (x,k) + Clok WH (42)

The I, (x, k) term is currently neglected.

The last [, (x, k) term representations distortion of the spectrum by the mean velocity field, such as bulk compression
or expansion. This is currently modeled by a simple isotropic spectral-advection model for dilatation

a
T,(%, k) = Ceomplinn o [kR;;(x, k)] (43)

2.5. b Equation
--- NOTE: The derivation used here for b isn’t consistent with the derviations for a; and R;;. Use with caution.
See Appendix A.3 for details.
To obtain a transport equation for b(x, ), we multiple the transport equations forp’ and v/, evaluated at x + % and
x— % respectively, [15]

!

apt+(pun+pu )n_ (44)
av' -
5 + Vi), =2V @0 +2(vun, —vug,) — (vuy —vu) , (45)



For the full derivation see Appendix A.3. Like in the R;;(x, r) transport equation, it is assumed that mean flow viscous

stresses are neglible and mean flow quantities are approximatly uniform in r,

dp(x)b(x,1)

at + (p(0b(x, Ty (x))

> (46)
= ﬁ(x) (Fprod (x: 1') + Fredist (x: 1') + Ftrans (x' 1') + l-‘decay (x; 7') + Z l—‘i (x: 1'))

=1
The b-production term is,

b(x)+1 _
Fprod(x: r)=-— <‘5(—x)> ( an(x: 1‘) +a, (x: —T')) p,n(x) 47)
The b-redistribution term is,
l—‘redist (x' T) =day (x' r)b,n (x) + an(x)b,n(x’ T‘) (48)
The b-transport term is,
T T T
L r) = 5O <V'("—7)P’("+7)“%(x—7)> @)
trans \*%» ﬁ(X)
n
The b-decay term is,
T T T T
Taecay(®,1) = p(X)V' (x - E) Uy (x + E) + p(x)v’ (x + E) Uy (x - E) (50)

The remaining terms are zero in the single point (r = 0) case, [;(x,0) = 0

reon) = (o (e + v (v-3)) (s (x4 ) - (+-3) 5

rr) = (x4 3) (2= 5) (v (4 5) = (+-3)) (52
I;(x,1) = p’' (x + g) Uh (x - %) (v’ (x + g) -V (x - g)) (53)
e =220 ( (e=3) (1 (e 5 (e 3 = (= 5 (e 9))] (54
i (x4 D), (x—1
sca =0 | DD Ty )| e

Like the R;; equation, the b is transformed to Fourier space and shell integrated to give an equation for b(x, k),

ap(x)b(x, k)

=+ (0@b(x () |

- (56)
= ﬁ(X) (Fprod (x: k) + Fredist(x’ k) + l—‘trans(-xv k) + Fdecay(x: k) + Z l—‘i (x, k))

=1
The b-production term is,

b(x)+1 _
Fprod (x: k) =-2 (W) an (x, k) Pn (x) (57)
The b-redistribution term is,
Creaise (%, k) = an(x, k)b, (x) + an (X)), (x, k) (58)
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The b-transport term is modeled by a gradient diffusion approximation analogous to BHR3.1 [3],

_ Ve ()b, (x, k)
Tirans(x, k) = Cdp(x)z (tﬁ(—;) 59)
The b-decay term is modeled as,
l—‘decay(x' k) = _Zszﬁ(x)b(x: k) (60)
The predominant cascade term is modeled as
_ 0 _ _ , ,  0b(x, k)
(k) = o0 o [k(e LK) + O3 (2 10) | ~Crab k) + cbsz” (61)

The remaining terms, [, (x, k), [3(x, k), and T, (x, k), are neglected.

The compression term is modeled in the same manner as R;;, I's(x, k) = Ceomplinn :—k [kb(x, k)]

11



2.6. a; Equation
To obtain a transport equation for a;(x, ), we multiple the transport equations forp’ and 1", evaluated at x + g and

x— g respectively, [15]

a !
au{’ (=~ n ~ n - 1 et ! = ! 1 P~
ot + Un (ui + U; ),n + UpUin = (V - E) Onin +v Onin + VOnin + E (pRni),n (63)

See Appendix A.2 for a derivation. Making the same assumptions used to simplify the R;;(x, r) transport equation,
with the additional assumption that uy, ,, =~ 0, as done in the a; equation in BHR3 [4], yields,

g&&&2+@m%mnmmu

at
= lproa (x: T) + Fredist (x: T) + Ftrans (x: T) + l—‘drag (x’ T) + 1—‘decay (x: T) (64)
4
+ ) T k)
i=1
The production term is,
Fprod(x; 1') = b(x, r)p,i(x) - Rin(x’ T)ﬁn (x) - ,D_(x)ai(x; r)ai,n (x) (65)
The redistribution term is,
Dredist (x: T) = ﬁ(x) (ai(x’ r)an (x)),n (66)
The transport term is,
T T T
L ) = 500 p(x+g)u(x—3)u(x+3) .
x, 1) =—p(x —
trans p p(x) ( )
n
The pressure drag term is,
= ! r ! _ Z
Larag (1) = GOV (x +3) i (x = 5) (68)
The viscous decay term is,
A ! r ! r
l—‘decay (x,1r) =—pQx)v (x + E) Taun (x - E) (69)
The remaining terms have I;(x,0) = 0, and are
T T T T
r(x,r)=p (x + E) Uy (x - 5) [un (x + E) —uy (x - E)] (70)
r r T r
L(xr)=p (x + E) Thin (x - E) (v (x - E) -v (x + §)> (71)
r r T r
L;x,r)=p (x+5)p,l(x—§)(v (x+§)—v (x—z)> (72)
T ™ (. N r
Gen) = (x4 )i (x - 3) (n (x4 ) - 1 (v 5)) 73

12



Fourier transforming and shell integrating yields,

PDaEL) | (510,00 08@) |

at
= prod(x: k) + Fredist(x: k) + Ftrans(x: k) + Fdrag(xr k) + l—‘decay(x: k) (74)
4
+) L@ o
i=1
The production term is,
l—‘prod (x' k) = b(x: k)p,i (x) - Rin(x’ k)ﬁn (x) - ﬁ(x)ai (x: k)ai,n (x) (75)
The redistribution term is,
Treaist (6, k) = p(x)(a;(x, K a, (x))'n (76)
The transport term is modeled by gradient diffusion,
Tirans (X, k) = Cqp(x) (Vt(x)ai,n(xf k))n (77)

The drag term is modeled in the same manner as previous LWN approaches [1, 10], (no summation over «), plus the
rapid decay term used in BHR3.1 [3]

Fdrag(x: k) = _[Crplkzlaa(x' k)l + Crpzé)_l(x’ k)]aa(x: k)(gia - Cap b(x: k)F_),l(x)

_ _ 78
+ CauP (@), (x, 1), () 7
The a;-decay term is modeled as,
Fdecay (x: k) = _Zszﬁ(x)ai (x' k) (79)
The predominant cascade term is modeled as
_ d 1 1 , , o 0a;(x, k)
0K = A0 5 [k (07 (1K) + 05k (3 0) |~ Gl b + €k 222 (80)
The terms I, (x, k) and I3(x, k) are currently neglected
The compression term is modeled analogously to the R;; compression,
_ 0
Iy (x’ k) = Ccompun,n ﬁ [kai(x’ k)] (81)

13



2.7. Model Summary
The model is summarized below. While there was previously a lot of derivation, not much is different from the current implementation of LWN in xRage. Terms
that are different from the current LWN xRage implementation are highlighted in blue.

ap —~
3+ (%) =0, 82
apti; -
0pE [ _._ L= _
TS + (pEuj + Pil; + piR;; — pz hkd}-‘) =(q (Pvt(K,j + CvT.j))j (84)
k J '
apek .,
o T (pi;e* - paj )J =0 (85)
ap_(x)R"(x! k) _ ~
T (PR, (6 ) ()
= Iprod (x' k) + Ftrans(x' k) + l—‘diss(x' k) + 1—‘return—L'o—ism:ropy(-7‘:' k) + Frapid distortion(x’ k) + l—‘1 (x: k) + l—‘3 (x: k) + l—‘4-(-7‘:' k)
Toroa (%, k) = =p(X) R (2, k)T 1 (2) — PO R (x, k)T () + a;(x, k)P () + a;(x, k)P (x)
Ftrans(x: k) =Cy (ﬁ(x)vt(x)Rij,n(x' k)),n
Taiss (%, k) = —2vk?p(0)Ry; (x, k)
S
l—‘return—t'o—isot:ropy(-":’ k) = _Cm@_l(x’ k)ﬁ(x) (Rij (x' k) - %Rnn (x' k))
l—‘rapid distortion(x' k) (86)

_ _ 2 _
= - rl{ a;(x,k)P;(x) + a;(x, k)P,i(x)} + Crz{ﬁ(x)Rin(X. k)t ,(x) + p(x)Rjn (x, k)ai,n(x)} + §Cr1,5(x)ak(x; k)P (x)6;;

|

1 _ 1 _
L(x k) = — E{b(x)aj (x,k) — b(x, k)a;(x)}P;(x) — 5 b()a;(x, k) — b(x, k)a; (x)}P,; (x)

d
Iy (x, k) = Ccompan,n ﬁ [kRij (x, k)]

2 _ ~
-3 CraPRmk (x, k)um.kéij

5]
L(x k) = ﬁ(x)ﬁ k (9‘1(x, k) + 65 (x, k)) [—Cr’lRl-j(x, k) + Ci,k ok
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dp(x)b(x, k)

st (PG R (), = P (Tyroa (6, k) + Treaist (6, k) + Terans (6, 6) + Tarag (4, k) + Taecay (1) + T () + T5 (1, K))

b(x)+1
Fprod(x: k)= -2 <(;()—x)) an(x, k) ﬁ,n(x)

Fredist(x’ k) = an(x’ k)b,n(x) + an(x)b,n(x’ k)
Tirans(x, k) = Cdﬁ(x)(vt(x)b_n(x, k))’n 87
Fdecay(x' k) = —Zszﬁ(x)b(x: k)

0 ab(x, k
I‘l(x,k)=ﬁ(x)ﬁ[k (072 (x, k) + 0521 (%, k) [—Cl’,lb(x,k)+Cl;2 (x )”

a
I (x, k) = Ccompﬁn,n ﬁ [kb(x: k)]

9p(x)a;(x, k)

at + (ﬁ(x)ai (x, k)ﬁn(x))’n = Fprod(x» k) + Fredist(x: k) + Ftrans(x: k) + Fdecay(x' k) + Fl (x: k) + F4(x: k)

Tproa (%, k) = b(x, k)P () — Rip (2, k) o (x) — p(x)a; (x, k) ()
Lyeaise (%K) = Casp(0) (@ (x, k), () |
Tirans (X, k) = Cap(x) (Vt (x)ai,n (x, k))_n
Tarag (k) = =[Crprk?lag(x, k)| + Crpp@7 (%, k) | ag (X, k)81 — Cap b(2, k)P;(X) + CanyD(X) s (%, k)T (%)
Tgecay (X, k) = —2vk*p(x)a; (x, k)

(88)

) = 50 5 [k (67106 1) + 052, 10) [ s (. ) + Ciak 220 ")”

d
F4-(x, k) = Ccompﬁn,n ﬁ [kai (x, k)]

— k
9pai() | (P07 (at ())
ot T R g .
= (1= Cap)P* P, + PEORS (T = (1 = Ca)pWf Wity () + 4, (P ) + Cap(®) (@t @) = af @) e
9@ ()

G+ (PTG @) = poy() (6 +265(0) ; + AEOL (R)a; () — af ()5, () + Cap() (v B (), ~ b* () s ©0)
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2.8. Coefficients
The coefficients are set roughly against matching RT and HRT simulations or based on their value from BHR3.1.
Tuning will be required, particularly in cases where the values are unchanged from BHR3.1.

Coefficient Value Equation | Role
C,4 2.0 all Turbulent diffusion
Cn 1.0 Ry; Slow return to isotropy
Cr1 0.3 R;j Rapid return to isotropy
Cyy 0.3 R;j Rapid return to isotropy
1 0.24 R Leith advection in k-space
o 0.06 R Leith diffusion in k-space
Cpq 0.24 b Leith advection in k-space
Cp, 0.06 b Leith diffusion in k-space
Cap 0.2 a; Rapid decay
Cou 0.4 a; Rapid decay
ol 0.24 a; Leith advection in k-space
2 0.06 a; Leith diffusion in k-space
Crp1 0. a; Pressure drag
Crp2 0.2 a; Pressure drag
Cyz 0 a; Flag for swapping between a;-transport closures
Ceomp 1/3 all Spectral compression by velocity dilatation

2.8.1. Cascade coefficients
The Kolmogorov coefficient consistent with the R;; cascade coefficients can be calculated in the same manner as in
[14]. Neglecting the backscatter term, which decays rapidly at high wavenumbers, the cascade of turbulent kinetic

1 .
energy, K = ERii» 1S

F(x, k) = %lk 0-1(x, k) [—Cr’lRii (k) + Clok wﬂ (92)

Assuming an inertial range spectrum of the form R;; = 2K k3,

4
k 3k3K,
6-1(x, k) = f K2R (x KV dk = / it 93)
0

g 3 5
Fx k) = gxg [_c;l -2 ] (94)

The dissipation of K, &, must equal the negative of the flux of K in a steady state inertial range. For a Kolmogorov

2 5
spectrum E (k) = Cxe3k™3,

2

25 (6 5 3
Cx = E(k)(=F)73k3 = (7 [c;l + gC;ZD 95)
This gives a relation for the advection coefficient,
' 2 -5 5 '
1 = §C1(2 - § r2 (96)

Additionally, the requirement that the backscatter term vanishes in a k* spectrum requires C;; = 4C/,. Experimental
data suggests Cx = 1.5 [23] while recent DNS has found a value closer to Cx = 1.8 [24]. Taking Cx = 1.8, these two
requirements give
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= % ~ 0.06 (9%)
The cascade terms for a; and b may be empirically tuned, but still require Cy; = 4C;, and Cp; = 4C}, to fulfill the
requirements of the backscatter term vanishing at the lower k-space boundary.

3. Reconstruct Evolve Average (REA)

Numerical error in PDE’s is typically dominated by the ability to reconstruct derivatives, and derivatives in LWN are
mostly separated between physical space derivatives d/0x; and spectral derivatives d/dk . The most numerically
expensive operations in LWN are typically associated with the spatial derivatives, as operations such as diffusion in
x are global and highly costly, and must be done for every wavenumber tracked in LWN. As a result, tracking a large
number of wavenumbers in LWN is expensive due to the physical space updates, even though the impact on accuracy
of tracking many wavenumbers is largely relevant only to the spectral updates due to the presence of d/dk derivatives.
This creates a situation where there is substantial incentive to find high-accuracy methods to solve the k-space updates
even if these higher accuracy methods are relatively costly, because these would allow us to track fewer wavenumbers
and thus reduce the cost of the much more expensive physical space updates.

High order methods were tried but it appears that methods applied to the k-space updates should be monotone for
stability reasons — a property rarely present in high order methods. One option for at least approaching this issue is to
use Reconstruct-Evolve-Average (REA) methods, which are time-stepped with the following procedure:

e Reconstruct the coarse-grid function with an interpolating function that is evaluated on the much finer grid.
The interpolation must have the property that it averages across each grid cell to equal the cell center value
of the original coarse grid function.

e Evolve the interpolating function to get the next timestep of the fine grid solution using any appropriate finite-
volume scheme. Normally REA schemes do not explicitly solve the interpolating function on a fine grid
(instead using analytical methods to calculate fluxes) but to the authors’ knowledge one needs to explicitly
update it on a grid when doing updates in k-space implicitly in time.

e Average the fine grid interpolating function to return to the original coarse grid solution.

REA methods are particularly appealing because it is easy to enforce monotonicity by using upwind schemes on the
fine grid update step, and we know the solutions we are looking for in k-space look like power laws. We can thus use
power law interpolation schemes to reconstruct the fine grid interpolation, and should be able to expect a high degree
of accuracy in that interpolation even when using few coarse grid points.

3.1. REA interpolation

The main choice in REA is how to interpolate the function during each k-space update. The most obvious choice is
some form of power law interpolation. A basic schematic for the interpolation is below,
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Figure 3 Schematic for the REA interpolation approach. The cell centered values of f on the grid in z are f_4, fo, f1,
where f; is in the cell we are currently interplating across. The cell-face powerlaw interpolations are f;, and f,,
griven by equation (99), and z; and z,. are the location in z of the left and right cell face. The interpolating function
is defined by a power law interpolation to a point at z = z. and f = f,.

In all cases we assumed f(k) = kg(k), where g (k) is the function we’re evolving in LWN, e.g. R;;(x, k), so that we
can integrate f(z) on a uniform grid in z. The value fj is the cell average (or cell-centered value) of the function in
the cell we’re currently interpolating across. The cell averages of the cells to the left and right are f_; and f;
respectively. Assuming f varies as a power-law, i.e. f(k) o k™, and assuming a uniform grid spacing in z, z =

k .
log (k—), then the face centered values interpolate to,
0

fi = f-1fo; fr =+fof1 99)

We then look for a solution interpolating between these face values and some central point (z, f.),

Zc—2Z

ﬁ Zc~7]
fine(2) = g (f) e (100)
fe (%)ZT_ZC z> 2z,

For the average of the function to equal the original cell average, we must have

1 (7
| fm@dz=1, (101)

(zr — )
To fulfill this for the assumed form of the interpolating function (100), we must fulfill

. [fo(zr —z)log (%) +z,.(f, — fr)] log (%) —zlog (%) (e =/ 2, (102)

(. = )10 (4) - .~ o tog (§)
One option is to set f, = f, and vary z., which is easily solved for. However, this was found to have mediocre results
in practice, and one must handle how z. behaves if it falls outside the cell.

The other obvious option is to set z. = z, and vary f, until the interpolating function integrates to the correct value.
Unfortunately we do not have an analytical solution to the above equation for f,, so instead we use Newton’s method
to approximate it. Because we may be searching for solutions extremely close to zero, we use a regularized form that
prevents f, from changing sign,
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oF f. OF

fo—F=— if <0
fr= e Faafc (103)
F (fc) i fc F >0
le=F\5)ar ¥ Far”

Where f.* is the value of f; at the end of one iteration, and F is the error in the evaluated integral relative to the original
cell average in (101),

(Zc_zr)(fc_fr)_(Zc_zl)(fc_fl) _ fO

F= (104)

fr fi (zr — )

g () g (1) T

a_F _ (zc —z,)(fe — fr) n ze—2z, (zc—z)(fe —f) n Zy— Z¢
f. - 105
P el w@e () .
This Newton’s method iteration can be simplified, for iy = I; 7 to
€afc

(1 —min(y,0)) (106)

fe=fe (1 + max(y,0))

Once the Newton’s iteration has converged to an f, the interpolating function is given by (100) with z = z.. An
example of this interpolating function is shown in Figure 4. This interpolation is not neccesarily very smooth, but it is
continous and captures the power-law nature of the underlying function.

1e+00¢ PRONG
o’ ‘~
7 ~
3 Vs o
.OI :\.
L 7 ~,
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1e-03¢ R S,
o P "’.\
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- 3 sl A
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(S W
Y <o+ Cell centers -

1e-061-=/ . v
7] = = Interpolated points N
L i

I
L I
| | | N

o o o0 00,0

Figure 4 — Example of the interpolating function used in REA. The red dotted line is the original coarse-grid
function, and the blue dashed line is the fine grid interpolation.
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4. Model Evaluation

The LWN model in xRage is in a preliminary state, but several basic test problems are tested to evaluate the
qualitative ability of the model to capture various canonical problems of interest.

4.1. Decaying Isotropic Turbulence
The decay of a field of homogenous isotropic turbulence is considered. The initial velocity field contains a spectrum
2
of the form E (k) = Ak* exp (—2 %), and time is normalized by the initial eddy turnover time 7, = L; ’ﬁ. The
0 an(t=
turbulence is described by a Taylor Reynolds number,

UpmsA

Re; = (107)

Where U5 = +/ Run /3. The Taylor microscale is approximated by its value in isotropic uniform density turbulence,

- ’101/1( (108)
&

Where ¢ is the dissiption of turbulent kinetic energy per unit mass, € = v [ 000 k?R,,,(k)dk. First, we consider a high

Reynolds number case with an initial Re; = 5E6, for which the compensated energy spectrum is plotted at different
1

sk
times in Figure 5. The wavenumbers are normalized by the Kolmogorov lengthscale, which is defined as = (%)4

The energy spectrum of the turbulence relaxes to a kg slope and reproduces the C;, = 1.8 coefficient on the spectrum
as prescribed by the cascade coefficients C); and C),. The normalized dissipation rate D = eL;/u3,,; in LWN
asymptotes to roughly D = 0.6, whereas high Reynolds number DNS observes values closer to D = 0.4 — 0.5 [24].
Running at lower Reynolds number, Re; = 72, as shown in Figure 6, LWN likewise overpredicts the dissipation rate
relative to the DNS of Samtaney et al [25]. The DNS includes turbulent Mach number effects, but at M; = 0.1 these
are unlikely to explain the difference. The difference may arise from this being a transitional flow at relatively low
Reynolds number or from differences in the energy held at low wavenumbers, due to the difficulty in modeling
backscatter in a robust manner.

. let04

= L t/’[o

=2 f —0.000
o let0l; --0.435
,_% : ~+0.601
NanyZ 3 --1.426

ME le-02; 3.083
— o 13.033

C1e05 1e-037 Te-01 1et01
kn
Figure 5 — Compensated spectrum of turbulent kinetic energy in decaying isotropic turbulence, with a large initial

Reynolds number. The lines show spectra at different times throughout the simulation, and the black horizontal line
is a reference line plotted aty = 1.8
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Figure 6 — Decay of isotropic turbulence, with an initial Reynolds number of Re; = 72. The DNS is from Samtaney
etal [25].

4.2. Homogenous Variable-Density Turbulence

Homogenous Variable Density Turbulent (HVDT) investigates a statistically homogenous field of density fluctuations
which is driven to turbulence by gravity-driven buoyancy forces. Here we compare to the A, = 0.05 and 4, =
0.75 DNS performed by [26] and also considered as a test problem for LWN in [10]. LWN is initialized from t = 0
by matching the initial value of b, and assuming a top-hat spectrum between wavenumbers 3 and 5. The DNS is
initialized with a similar tophat spectrum but sharpens the interfaces between the materials and then applies a specific
initial diffusion scale. Wavenumber space is discretized into N, = 128 modes between z;, = —4 and z,; = 10,
where z = z,logk/k,. Time is normalized as T = t/\/A,g/Ly, where L, is an integral lengthscale of the initial
density fluctuations,

Jy” b(k)k~tdk

=M
) , bk)dk

The DNS is normalized by the lengthscale associate with the spectrum of p’ instead of b(k), but at low Atwood

numbers these are similar metrics. The LWN reference lengthscale is L, = 1.7 and is larger than the lengthscales of
the DNS L, = 1.3 — 1.4 [26], likely due to differences in the initial field. The viscosity is set by the Reynolds number

Rey = 10000 (4, = 0.05) and Re, = 1563 (4, = 0.75), as v = /A, gLY* /Re, .

0 (109)

The behavior of several integral statistics from LWN is shown in Figure 7 through Figure 10. Generally, LWN does
a reasonable job reproducing the DNS, although transition of K and b appears to occur too quickly. The degree of
agreement between LWN and DNS is arguably worse than level of agreement seen in [1], but we note that here LWN
is initialized from t = 0 and using coefficients tuned for other problems. Figure 8 shows spectra of several statistics
relative to the DNS at different times.
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Figure 7 — Mean statistics in homogenous buoyancy driven turbulence at A, = 0.05. The DNS is from Aslangil et al.

[26].
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Figure 8 — Spectra of turbulent statistics in homogenous buoyancy driven turbulence with A, = 0.05. The DNS is
from Aslangil et al. [26].
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Figure 9 — Mean statistics in homogenous buoyancy driven turbulence at A, = 0.75. The DNS is from Aslangil et al.

[26].
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Figure 10 — Spectra of turbulent statistics in homogenous buoyancy driven turbulence with A, = 0.75. The DNS is
from Aslangil et al. [26].
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4.3. Shock-Driven Turbulence
LWN is compared to the Richtmyer-Meshkov (RM) simulations of Wong et al. [21], which considers a Mg = 1.45
shock impacting an 4, = 0.68 interface between air and SF6, with reshock. The mixing layer width is defined

w= 4f Csr, (1 — Csp, )dx (110)
0

Although g, is used in place of &gy, when calculating W in LWN. These can be translated using ¢* = ¢* — b*, but
doing so lead to spurious discontinuities in the mixed width when b was rapidly chaning at a shock. The TKE is
integrated in the transverse directions of the 30.0 X 2.5 X 2.5 cm3 domain of the DNS. LWN is initialized with a top-
hat spectrum in b over wavenumbers 50-60 cm™1. The DNS initial conditions contain a broad diffusion layer, and the
initial integrated value of b is set to 0.00321 times its configurational value to match the diffuse condition. Figure 11
compares the mixing layer width and integrated turbulent kinetic energy to the DNS, with which it sees reasonable
agreement.
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Figure 11 — Mixing layer width (a) and TKE integrated over the transverse directions (b) in a Mg = 1.45, A, =
0.68 RM simulation. The DNS is from Wong et al [21].

4.4. Rayleigh-Taylor Turbulence

We compare to the Rayleigh-Taylor simulations of Livescu et al. [18]. All considered simulations have Re, = 500

and L, = i—z, with viscosity again set by v = 1/AtgL?(’J/ 2 /Req. These cases are run with N, = 40 wavenumber bins
between z;, = —4 and z,; = 11 ,and a tophat initial condition on b (k) over wavenumbers 30 to 34.

Figure 12 shows several integral statistics from an A, = 0.5 case with gravity reversed at T = 16, while Figure 13 is
an A; = 0.9 case with a constant gravity field. LWN strongly overpredicts b during the transitional phase of the flow
and appears to reach self-similarity quicker than the DNS. Most features of the DNS results are reproduced in LWN,
and LWN is capable of capturing the ‘de-mixing’ behavior, where the mixing layer shrinks after gravity is reversed
in the A, = 0.5 case.
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Figure 12 — Mixing layer width (a)and maximum values of turbulent kinetic energy (b), turbulent mass flux (c) and
density-specific volume covariance (d), for an Ay = 0.5 Rayleigh-Taylor instabilityu. The DNS is from Livescu et al.
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Figure 13 — Mixing layer width (a)and maximum values of turbulent kinetic energy (b), turbulent mass flux (c) and
density-specific volume covariance (d), for an A¢ = 0.9 Rayleigh-Taylor instabilityu. The DNS is from Livescu et al.
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5. Summary

Updates one the LWN implementation in xRage [11] are presented, included backscatter modeling, mean flow
compression modeling, and incorporation of the material transport models from BHR4. Spectral-space numerical
interpolation schemes are used to reduce the computational cost of the model. Results from a variety of
inhomogeneous, variable density turbulent flows including Rayleigh-Taylor and Richtmyer-Meshkov turbulence are
presented, and LWN successfully captures the qualitative evolution of these flows. Further work on the model is
needed to improve coefficient tuning, including comparing the fit of specific closure models against the
corresponding exact terms calculated from DNS or experiment.
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A. Appendix — Two-Point Transport Equation Derivations

Derivations for the two-point equations used here are provided below. These have not been been thoroughly checked
and can almost certainly be further simplified, but this appendix is included in the hope that these could be useful as
a starting position for further analysis.

To reduce clutter, the g terms are dropped, e.g. f(x + g) is written f (x + ). The math is the same and this allows
the equations to be written in a shorter form.
The equations have colored terms. The colors should be considered arbitrary, but each term retains its original color

(to the degree that this is possible). The colors are intended to help in tracking terms as they split and move around
the equations, and to make it easier to do term-by-term comparisons between single-point and two-point forms.

A.l. R;; Equation
Define:
_ plx +r)u)(x —r)u(x+71)
Ri]'(x'r) - p—(x + T')
p'(x +7r)uy(x —7)
a,(x,7) =

plx—1)
O-i]' = _P(SU +Tij

Start with the equations from Clark and Spitz [15]

au{, ~ " ~ " — 1 — ’= ’ 1 —
atl + u;’[(ui + u; ),n + UpUin = (V - 5) Onin +v Onin + VOnin + E(pRni),n (1 1 1)
0P e s T P\ s
atl + (pui (un + un))'n + pupliy = Onin — Eo-ni,n + (1 + E (pRni),n (112)

Multiply (111) evaluated at x-r by (112) evaluated at x-+r,

dp(x + r)u]f'(x +71)
Jat

oGt Gan ST )

ap(x +ru (x — r)u}’ (x+71) .
5 =u/(x—r7)
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We can write the RHS side in either one-point form (where r = 0) or retain the two-point form,

T 7T
U; i
1o~ P J

p'u
—_— " "~ " . 1 n ! e " ]

= Uy (pui'tn) n — U; (pui'ug) n — PUnUj Uiy + Uj Oy — Fi Onin + U Ryin + 5 Ruin
One-Point "o~ "o, ~ ", (.= 1 — "=
(BHR) = PU U = PUG U Uj g — U PU; Uy + pU; (V _/_3 Onjn t PU;V Onjn
"

i i pu
+ pui'voy;, + 2 (pan)‘n

(114)

=—u'(x—1) (p(x + r)u]f'(x + )i, (x + r)) —ul'(x—1) (p(x + r)u]'-’(x + ruy, (x + r))

n n
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—ui'(x — r)manj’n(x +r)+u'(x—r) (p(x +1)Ry(x + 1, 0))
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(LWN) = p(x + 1w (x + )i (x = Duy(x = 1)

n

n
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(115)

With some simplifications to work towards the BHR3.1 form,
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Note the following (this is only used in the 2-point form)
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Going back to the full equation, at this point the 1-point form is now in the basic form used by BHR [4].
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With some final reductions, we yield a relatively manageable form of the two-point R;; equation. Again that

that x + r terms should be x + =, and in practice one probably should use a symmtetric verion of R;;, such as
RY™(x,r) = E(Rij(x, )+ Rij(x, —r)).
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The two point form is the same as the 1-pt BHR equation as r =0 except we’ve split the transport term

(pul w'uy

 into (puyu;"uy

- pu'uya; ) , creating a new term in the equation. This is to ensure that each term

1nd1V1dually — 0 asr — . We also use Reynolds averaging on the viscous stress tensor whereas Schwarzkopf
2011 used Favre averaging on that term.

pu;'u;"uy doesn’t — 0 in a trival manner as r — oo because correlations between values of nonzero mean don’t go

to zero even if the terms are uncorrelated, e.g. u”’(x + r)u"(x —r) = a?asr - «
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A.2. a; Equation
To derive the a equations, starting from Clark and Spitz [15] p’ and u;" equations
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— (p(x + r)u’ (x — ru;, (x + r)) + p(x + r)uy (x + Py, (x — 1)
—p' (x +r)uy (x = )i, (x — 1) — p'(x + Puy (x — u, (x — 1)
Two-Point -p (x + r)un(x r)ul n(x r) (131)
1
(LWN) G 7) (7 =) = s ) B =)
+p' (x + 1)V (x = 1)Fpin(x —7) +p'(x + V(X — 10 (X — 1)
p@+ﬂ
2x—1) (p(x )Ry (x — 7’))”
Apply averaging:
One-Point = —(pa;lin) n + p'unly — (PW'up) n + pupuy — pant, — (unp utn) — Upp'ully Uy (132)
(BHR) —bayin +p'Von
— (p’(x +r)u) (x — r)i, (x + r)) +p'(x + Muy(x — )i, (x + 1)
— (pCc +r)uy (o — uy (x + r)) + p(x + ruy (x + Muyh(x — 1)
;Fljv\;i\li)olnt —p'(x+ruy (o — M (x — 1) — p' O + Muy (x — M (x — 1) (133)
-p (X + r)ul,n(x - r)ﬁn(x - 7") + P (X + T)V (X - T')O'm’n(x )
+p'(x +1r)v(x — 1)), (x — 1)
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Do some simplifying:

One-Point = _(p_aian),n + p,u{,,nan (pRLn) + punuln p_anﬂin (P unuzn - anp,u{,,n (134)
(BHR) — bﬁm,n + vp’ Um,n +v'p’ anz,n
=— (p’(x + ru) (x — )i, (x + r)) +p'(x + Pup(x — )i, (x + 1)
. — (pCx +r)u) (x — rug (x + r)) + p(x + ruy (x + Muh(x — 1)
(Tgv\;i\l;)omt —p'(x +uy (x =)l (x — 1) — p' (x + Mug (x — P (x — 1) (135)
—p'(x+rul(x = i,(x =)+ p'(x + 1)V (x — r)amln(x -71)
F7(x — P& D@ — 1) + 0T F DIV & — o — 1)
Using:
F(x = )P G T P opnCt — 1)
_ v(x —1)— B B S
= mffnl,n(x —1) = v(x—1)plx + 1)og(x — 1)
V(x —r)plx +r1) - - — V(x —1) - S —
ey Y G A DTG ) 2 SV G D G )01
Ve =r)plx+ 1) — - v(x—71)— - :
=— Tt V'(x+1)op,(x —1) —mv (x+m)p'(x +1)0h,(x—7)
One-Point = ~(Pain) n + pitintln = Wnp'tin = Rinfn =P <p lP_ n) n + puntyy = pantlin = (P UnUyn 136
(BHR) - bani,n - p_vlo'r,u,n ' ( )
== (PG G = DG+ 1)) = RinCor)PnCe+7)
~px+7) (p(x : ””ZE’; R 3“ nlet ”)n S o Y s v ey
Two-Point —p'(x +r)uy (x =il (x — 1) — p'(x + Puy (x — Mgy (x — 1)
(LWN) +p' (x+r)V(x = 1) n(x —1) — ww(x +1)opn(x—1) (137)
v(x+71) ’
’ i 7 17()( — T) ’ ’ 7 —
+ {p x+r)'(x—r)op,(x —1) — ot )v (x+1r)p'(x +1r)op,(x r)}
+{p"Cx + u(x — M (x + 1) = p' (x + Pu)p (x — )ity (x — 1)}
Note that:
. _(pw'uy)  _ _[puiun _(pun _(pul __(pwiun _
%nﬁ-é’)omt p< F )ﬂ =p <T>,n -p (7 ai>'n - p< F an)n = p( i >’n —p (a;iay) n (138)
B plx +r)u)(x —r)uy(x+1)
p(x+r)< D) )n
Two-Point o plx +ruj(x —ruy(x + 1)
(L"VVE’,N)‘"H =p(x+71) ( T B (139)
—plx+71) ( E n ; a;(x,r)a,(x +71, 0))n
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_ L Rp— p'ujuy
) plx +ruj(x —Nup(x +71)\ — . p'(x + rul(x —r)u,(x +7)
ggvvsfﬁ;)lnt < ) )ﬂ = (uj(x —Nup(x + r))ln + ( HETT) )n (141)
(OBnI_eIg)Oint = _(p_aian),n - Rinp_,n - p_u{u;l,n - P_ (p u—lun> + P_ (aian),n - p_anai,n - bani,n - P_V'Ur'u,n (142)
= (PG =i +7)) = Rin(x,T)pnlx +7)
_ p'(x + ru(x —up(x + 1)
_p(x+7')< p_(X"rT) >n
—plx+ r)(u{(x —1r)u,(x + r))’n
_ plx—1) _
+p(x+71) (m a;(x,r)a,(x+r, 0)) +p(x + ruy(x +r)u ,(x — 1)
Two-Point P n ”
(LWN) +p(x +r)a,(x +7,0)a;,(x —7,0) — p'(x + r)uy (x — )i, (x — 1) (143)
—p'(x +Mup (x —1)a,(x —7,0) + p'(x + 1)V (x — 1) (x — 1)
— %v’(x +1r)opn(x —1)
v(x—71)
+ {p’(x +1r)v'(x =)oy (x —1) — e V'(x+1)p'(x +1)og,(x — r)}
+ {P’(X + T)uz,,n(x - T)ﬁn(x + T) - P’(X + r)ui,,n(x - T)ﬁn(x - T)}
+ {p’(x +1)uy (o +uy (e =1) = p' (x + Muy (0 = r)u (x — r)}

With some final simplifications we obtain a two-point equation that reduces to the BHR3.1 equations as r — 0, if
we assume Uy, ~ 0

%v’@c +1)opn(x —7)

v(x—1)
+ {p’(x +1r)v'(x =)oy (x — 1) — e v'(x+1)p'(x +1)og,(x — r)}

+ {p’(x +r)up(x — r)(ﬂn (x+71r)—1,(x— r))}
+ {p’(x +uy (x + rugp(x — r)(u,’,[(x +7r) —u,(x — r))}

= b, 1) (x — 1) =

aﬁai =~ _ T = p,u{u;l — - -
One-Point ot + (paiun),n = _Rinp,n — PUlUnn — P - + 1% (aian),n —pPapu;n — bo_ni,n (144)
(BHR) o ),
— pv,o_vlu,n
dp(x —r)a;(x,7) - -
TL + (p(x —r)a;(x, )i, (x + r))’n
= =R, M)pn(x +7) — plx + ruy n (x + uj(x — 1)
_ p'(x +1)ui(x —rug(x + 1)
—px+1) —
plx+1) N
_ plx—1) _ _
Two-Point +px+1)| = a;(x,r)a,(x +7,0) | —plx—r)a;(x,)i,(x —1)
plx+1) (145)
(LWN) n
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A3. b Equation

--- NOTE: This derivation for b isn’t fully consistent with the previous two derviations. Use with caution.

This b-equation derivation is in a rougher shape than the other equations and doesn’t follow the single point
derivation. Additionally, it uses a different definition of a;. It is included in the hope that it is useful as a reference,
but rederiving it following the BHR equations would probably be wise if using the equation for more concrete
applications.

To derive the b equations, starting from Clark and Spitz [15] p’ and V' equations

!

ap I~ "
E‘I' (P Un +pun),n =0

!

a + V') y =2V (ly) n + 2(1/ Unn —VUp,) — (vuy —vuy) ,

Define b(x,7) = —p'(x + r)v'(x — r) and a;(x,7) = —p(x + r)V'(x — uy, (x + 1)

ap'(x+r)v'(x—r)
at -

dp'(x+71)
at

v'(x—1)
a

—v'(x—71) p'(x+1)

= (v’(x —r)p'(x +r)i,(x + r)) L p'(x + )i, (x +1)v,(x—1)
+plx+r)v'(x - Nup(x+1) + v (x —r)ug(x +1)pp(x +1)
+v'(x—rprx +ruy(x +1) +v'(x —1r)p'(x + Puy p(x + 1)
+ (p’(x +r)v'(x — r)i, (x — r))n —V'(x —=1)iy(x —1r)py (x +71)

Eﬁ’v\;ﬁ;im = 2p"(x + 1)V (x — 1) (T (x — r))’n =20 (x +r)v(x =) up,(x — 1) | (146)
+2p (x +r)vix =) uy ,(x = 7) +V(x = 1r)p' (x + Nuy n(x — 1)
+p' (x+u(x —r)v, (x—1) + (v'(x, —r)p'(x + r)u, (x — r))‘n
—V(x —r)ph(x+u(x — 1) — p'(x + ) (v(x — r)uy (x — r))‘n
Apply averaging
=— (b(x, r)(ﬁn(x + 1)+ i, (x — r))) U, (x+1)p'(x + 1)V, (x — 1)
+p(x+r)v'(x— r)ﬁ;['n(x +r)+v(x —ru(x+1)p,(x +1)
+v'(x—rphx+ru,(x+1) +v'(x —1r)p'(x + Nuy ,(x + 1)
Two-Point +pp(x + r)(v’(x —rul(x + r)) —V'(x = r)i,(x —7)py (x +71)

(LWN) +2b(x, 1) (1, (x — r))'n —20(x—1r)p'(x +1r)up(x—71) (147)
=20 (x + 1) (x —uy (x = 7) +V(x = 1r)p' (x + Nuy ,(x — 1)
+p'(x+ru(x—r)v, (x—1) + (v’(x —7r)p'(x + r)uy(x — r))'n

VD@ w1
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=- (b(x, 1) (@ G+ 1) + 11, (x = 1)) = Ty G +1)p G+ PV = 1)

— i, (x—r)v'(x— r)’p_’n x+r)+px+rv'(x —ruy (x +1)
+v'(x—uf(x+1r)pa(x +7) + v (x —1r)pLh(x +uy(x + 1)
Two-Point +v (= 1)p'(x + Mu e + 1) + 2b(x, 1) (T (x — 7)) ;

(LWN) |

(148)

—20(x —r)p'(x +r)u(x —1r) =2p" (x +r)V'(x =) up ,(x — 1)
=20 (x+ 1) (x —uy ,(x —7) + V(= 1r)p' (x + Puy (x — 1)
+p' (x+r)u(x —1r)v, (x—1) + (v’(x —r)p'(x +r)u)(x — r))ln

— v~ DpaG DU —1)

Use
=2V(x —=1r)p'(x+r)uy ,(x =) + V(x = 1)p' (x + Nup p(x —1) = —V(x —1)p' (x + 1) up ,(x — 1)
= - (b(x, r)(ﬁn(x + 1)+ i, (x — r))) — U, (x +1)p'(x, ")V} (x, —1)
— i, (x—r)v'(x— r)’p_’n x+r)+ple+r)v(x —ruy(x +1)
+v'(x—nuy(x+1r)p(x+1)+ V' (x —1r)pL(x +uy(x + 1)
Two-Point +v'(x —1)p'(x +r)uy ,(x + 1) + 2b(x, r)(ﬁn(x — r)) N (149)
(LWN) :

-V =—mp'x+r)up,(x—1r)=2p'(x +r)v'(x —uy ,(x — 1)
+p'(x+r)u(x—r)v, (x —1) + (v’(x —7r)p'(x + r)ul(x — r))'n

VD@ w1

Move advection terms to the LHS

PO | (b e +7) + 80~ 1)) = 26 r) (i =),

=T, (x+1r)p' (x +1r)v(x —71) =, (x —r)v'(x —1)pl (x +7)
+px+r)vV(x —Nup(x +1r)+ v (x —uy (x +1)p(x +1)
Two-Point +v'(x—rphx+ru(x+71) + v (x—1r)p'(x +1)uy ,(x +71) (150)
(LWN) —Vx—=rp'x+r)ug,(x —r)=2p"(x + r)v'(x —uy ,(x — 1)
+p' (x+r)uf(x —r)v, (x—1) + (v’(x —7r)p'(x + r)ul (x — r))n

~ V- D@+ 1)

Make use of the relations:

—px+r)Vx+1r)—plx+rv'(x+7r)—p (x + 1)V (x +71))

1
p’(x + 1") = m(l

viix—r)= ﬁ (1 —plx—rvlx—-1r)—vlx—-r)p'x—r)—p' (x —7r)v'(x — r))
b(x,0) = p(x)v(x) —1
u”(x) = —a(x,0)
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7 — 1P e + 1) U G — 1)
b(x+1,0) _ Vv(x—1)
b(x+7,0)+1 —p(x+r)17(x+r)

= app(x —1,0)V(x —1)p(x +1) [

v(x—1)
(x4 1)

V(X +1r)up (x — 1)

prx+rv(x+r)u(x—1)

(v (x—7r)p'(x + r)uy (x — r))

o (v (x —7r)p'(x +r)uy (x—r)) (v (x—7r)p'(x +r)uy (x—r))_
—p(x+r)< plx+71) plx+1) P (X F1)
_ _b‘n(x—r,O)_b(x—r,0)+1_ 3
V,n (X, —T) - p—(x — T) ﬁz (x _ T) p,n('x T')
Pnlx+r)v' (x —ruy(x +71)
_ Palx+1) b(x—7,0)+1

p'(x —uy (x +71)

plx—1)

o—1) (—b(x r,ul(x+71r)—

—p'(x—r)v'(x—r)uy (x+r)>

Plug in our relations derived above:

ab(x, 1)
at

+ (b(x, r)(ﬁn(x +7r)+ i, — r))) — 2b(x, r)(ﬁn(x - r))'n
= [—ﬁn(x +r)p'(x +1r)vy(x —1) - un(x -V (x—1r)ph (x+ r)J

+p(x + 1)V (x —ruy ,(x + 1)+ plx + 1) vx —

V(x + )
pffi?( b(x -1, 0) Ul (X + 7) — (p(xr—_or); =Pl (x+r)>

+v'(x = 1)p e +uy (x +1) —v'(x —1r)ph (e +uy (x — 1)

V(x—1)
v(x + 1)
= 2p"(x, v (x, —r)uyl n (x, —1) (151)

b ,0
— Uy (x = 7,0)V(x —=1)p(x +7) [%

2x—=1,0) blx—710)+1
s6-n | pa-n O 4
(v (x —7r)p'(x + r)w(x — r)))
+
plx+1) .

(p x+r)v(x—rul(x— r)) p'(x— r)v"(x rul(x +1)
plx+1) plx—1)

V'(x+1r)uy(x —1)

+v'(x —r)p’'(x + ruy ,(x +7) + prx+r)vV(x+rul,(x—1)

Two-Point
(LWN)

+p'(x + r)ul (x—r)[‘

+/3(x+r)<

P (x+7)
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Change to advection of pb

Two-Point
(LWN)

dp(x)b(x,1)
dat

N (ﬁ(x)b(x, I (T (e + 1) + T (x — r))) _

2
(ﬁn‘n (x+1r)+ ﬁn_n&x - r))]

—ﬁ(x)b(x, T) ﬁn,n(x) - Zﬁn,n(x - T) + 2

Upy(x+7r)+i,x—r
2

P [(ﬁn(x +7) -; U, (x — r))

+ b(x,7)

) i, (x)> P (x)

bn(x,r) + 1, (x +1)p'(x +1r)vi(x — 1)

+ U, (x =)V (x —1)ph (x + r)]

+p(x) [ﬁ(x+r)v’(x—r)u 2x+r)+plx+r) _E +T;v (x+1upy (x—r)]
+p) [V e = r)ph e + Pug(x + 1) —v'(x —=)php(x + ruy (x —1)|

_E ; ;p(x+r)v(x+r)u n(x—1)

=20 (x + 1)V (x —uy,(x — 1)

+p(x) [v (x—=m)p'(x+1)up(x +7) +

b(x +1,0)

—p(X)apn(x —1,0) [17(96 —r)px +71) [m

}— b(x,1)

e )[p SEpll g “ =7, 0) + an— 1, O)b_n(x,r)]
—p(x)p"(x + r)ull(x — 1) [—b(x_z—(;,_())r;- 1] pn(x—1)
b(x, b(x —r,
—p(x) [ﬁ(ix:% a,(x—r,0)— ;J(Cx ! ())) a,(x+1,0)
b(J;Z_(;—'_O)r;l "(x —ruy(x + T)] Pn(x+7)
+p(x)p(x + 1) <(V G r)/)ﬁg i gun(x — TD) +
(p (x+r)v(x—ruy (x—r)) plx—rwx—rul(x+r)

pP(X)pp (x+1)

plx +71) plx—1)

(152)
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Rearranging to have zero production terms at the end yields a form that asymptotes to the BHR3.1 formasr — 0.
Again, note the caveats that this equation uses a different form of a; than used elsewhere in the report.

+ i, (x =)V (x —1)ph (x + r)]
+ o[V G =+ ) (up (e + 1) —ug(x = 1) |
+ p(x) [v’(x —1)p"(x + upp(x + 1)

v(x—1)

Single- _
Point a(apb) + (pbiiy) , = —2(b + Dayp, + 2payb, + <(p un)) + Zﬁv'un,n (153)
(BHR) t P )a
(7p(xz?bt(x, r) + (ﬁ(x) b1 (f,(x +7) -; iy (x — ﬂ))

=p(x) [ﬁ(x + 1)V (x = uy  (x + 1)

+p(x+71) 7& n ri V' (x 4+ 1)uy p(x — r)]

+()F“+”%g_”b@—nm+%u—nmmmﬂ]

b 0 1
=900 () (P PG = e =)
+ 0" Cc— I e+ 1)p(x + 7))
o (v’(x —1r)p'(x + r)u,(x — r))
+p(x)p(x+r)< )
(ﬁn_n (x+7) + 1,0 — r))]

= p)b(x,7) ﬁn,n(x) - Zﬁn,n(x -7+ 2
Two-Point - -
(LWN) b [E ) er I =r) ﬁn(x)> () (154)

- o[ DB o o4 VR T)

+ Tt plx+r)v(x+nrup,(x—1) =2p" (x + 1)v'(x — r)ugy,(x —

—p(x) b(x,7) (anyn(x -7,0) —ap,(x +7, 0))
(p’(x +r)v'(x —r)up(x — r))
plx+1)

p'x —r)v'(x —r)up(x +71)
- plx—1)

+p()py (x +71)

r)
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